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I have used a novel approach based upon Hamiltonian mechanics to derive new 
equations for nearly geostrophic motion in a shallow homogeneous fluid. The 
equations have the same order accuracy as (say) the quasigeostrophic equations, but 
they allow order-one variations in the depth and Coriolis parameter. My equations 
exactly conserve proper analogues of the energy and potential vorticity, and they 
take a simple form in transformed coordinates. 

1. Introduction 
In a recent paper I derived a new set of approximate equations for nearly 

geostrophic flow in a shallow layer of homogeneous fluid (Salmon 1983, $4, hereinafter 
referred to as 583). These equations are noteworthy in that they exactly conserve 
proper analogues of the total energy and the potential vorticity on fluid particles. 
The conservation laws were automatically obtained because I applied my approxi- 
mations directly to the Lagrangian of the fluid, taking care not to break the time and 
particle-label symmetries associated with the conservation of energy and potential 
vorticity. My equations are (I believe) the only currently known equations for nearly 
geostrophic flow that have proper conservation laws, apply to nearly geostrophic flow 
on all horizontal lengthscales, and accommodate order-one variations in the fluid 
depth and Coriolis parameter. 

This paper has two objectives. The first is to demonstrate the close connection 
between my equations and the ‘semigeostrophic’ equations of Hoskins (1975). The 
semigeostrophic equations, which have been widely used in meteorology, also 
conserve analogues of the energy and potential vorticity, but only in the case of a 
constant Coriolis parameter. The semigeostrophic equations take a very simple form 
in cleverly chosen ‘geostrophic coordinates ’. 

My second objective is to present new equations for nearly geostrophic flow with 
horizontal lengthscales larger than the Rossby deformation radius. These new 
equations are hardly more complicated than the purely geostrophic ‘type 2’  
equations of Phillips (1963). However, they consistently include the effects of relative 
vorticity on the large-scale flow. These new equations are therefore the appropriate 
equations for simple numerical models of the ocean thermocline, in which the 
deformation radius is barely resolved, but in which inertial boundary layers may be 
important. 

This paper is self-contained, but it should be read as a sequel to 583. Section 2 
summarizes the results of 583. Section 3 derives generalized semigeostrophic 
equations, which possess consistent conservation laws in the case of a non-constant 
Coriolis parameter. The generalized semigeostrophic equations have a Hamiltonian 
formulation, which is the same as for the S83 equations, to within the accuracy of 
either approximation. The ‘geostrophic coordinates ’ found by Hoskins turn out to 
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be canonical coordinates. Section 4 derives the new equations for large-scale flow. For 
simplicity, I focus on the case of a single shallow layer of homogeneous fluid that is 
horizontally unbounded and quiescent at  infinity. However, my methods and results 
should easily extend to other cases. These will be the subject of future publications. 

The best-known approximate equations for nearly geostrophic flow are the 
‘ quasigeostrophic ’ equations (see e.g. Pedlosky 1979). The quasigeostrophic 
equations are mathematically simple, and they conserve analogues of the energy and 
potential vorticity . However, the quasigeostrophic equations do not allow order-one 
variations in the Coriolis parameter, and hence are inapplicable to planetary-scale 
flow. Furthermore, in the quasigeostrophic equations, the average density strati- 
fication (or the fluid depth, in the presently considered case of a homogeneous 
fluid) is prescribed, and the equations apply only to slight departures from the 
prescribed state. For these reasons, the quasigeostrophic equations are inferior to 
any of the approximations discussed in this paper. Of course all of these approxi- 
mations filter out the relatively fast inertia-gravity waves that can make numerical 
integrations of the primitive equations very costly. 

Sophisticated approximation methods based upon a Hamiltonian formulation have 
been widely used for the study of integrable dynamical systems. However, the general 
equations for fluid motion are almost certainly non-integrable. The approximation 
methods presented here are simple and direct, and are not intended to produce 
analytical solutions. My goals are accurate conserving equations that are free of 
artificial restrictions. I emphasize that the accuracy and conservation properties of 
all my final results can be verified by pedestrian algebraic calculations. These 
calculations are often quite lengthy, but they provide an independent check on the 
results of the Hamiltonian methods. 

2. The L, dynamics 

.written in the familiar form 
Hamilton’s principle for a mechanical system with N degrees of freedom can be 

where qi are the generalized coordinates, pi the corresponding momenta, H the 
Hamiltonian, and 6 corresponds to arbitrary independent variations 

at  fixed time 7 .  

The equations governing a shallow rotating layer of inviscid homogeneous fluid are 

f v = - g -  
Du 
Dt 
-- 

where x = (2, y)  are horizontal Cartesian coordinates, u = (u, v) the corresponding 
horizontal velocities, t is the time, g is gravity,f(x, y) is the Coriolis parameter, h(z ,  y, t )  
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is the depth of the fluid, and D/Dt = a p t  + u a/ax + v spy. None of the terms in (2.2) 
has z-dependence. 

As fully explained in S83, the shallow-water dynamics (2.2) can be expressed in 
a form analogous to (2.1). Again, let the positions 

%(a, 6,717 y(a, b, 7 )  (2.3) 

of marked fluid particles be considered as functions of curvilinear labelling coordinates 
(a, b) and the time 7.  The labelling coordinates, which are analogous to the subscripts 
in (2.1), remain constant following the columnar motion of the fluid particles. Thus 
a/& E D/Dt. It is convenient to assign these labelling coordinates so that 

i.e. 

d(mass) 

P 
dadb = - - - h dx dy, 

where p is the constant fluid density. The continuity equation ( 2 . 2 ~ )  is obtained by 
direct application of a/ar to (2.5). Thus mass conservation is implicit in the particle 
representation (2.3). As shown in 583, the form of Hamilton’s principle analogous 
to (2.1) and equivalent to (2.2) is 

6 Ld7 = 0, (2.6) I 
where 

ax 
L = S I d a  db [ (u- R) %+ (v + P) 

and H = ~ ~ ~ d a d b [ u z + v z + g h ] .  2 (2.8) 

Here R(x, y) and P(x, y) are any two prescribed functions that satisfy 

and 6 stands for arbitrary independent variations 

6x, 6y, 6u, 6v(a,b,7) 

in the particle locations and velocities. These variations yield 

au ay ah 

av ax ah 

62: - - f - = - g -  
a7 a7 ax’ 

6y: -+ f -= -g -  
a7 a7 a Y  ’ 

ax 
6u: u=-- ,  a7 

a Y  6 v :  v = -  a7 ’ 

(2.10) 

(2.11) 

which are equivalent to (2.2). The conservation of energy, 

dH/dt = 0, (2.12) 
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and the potential vorticity on particles, 

- a [(---+f)/h] av au = 0,  a7 ax ay (2.13) 

correspond to the symmetry properties that H is invariant to translations in time 
and to particle relabellings that do not affect the Jacobian (2.5). For complete details 
refer to S83. 

In this paper, I am solely concerned with approximations to (2.7) that are valid 
in the limit of nearly geostrophic flow. If u and v are simply set equal to zero in (2.7), 
then the resulting Lagrangian 

(2.14) 

depends only on the particle locations. The approximate dynamics 

6 L,dr = 0 (2.15) I 
are equivalent to the equations for geostrophic balance, namely 

ax 

ah. J ax 
6y: f-=-g- 

a7 a Y  

(2.16) 

Since mass conservation is implicit, (2.16) are equivalent to the following set of 
Eulerian equations : 

f u  = - 9 -  
a Y  ' ah I (2.17) 

ah a a 
at ax a Y  
-+- (uh)+- (vh) = 0. 

Equations (2.17) differ from (2.2) in the total neglect of the relative accelerations. 
This neglect is too severe for most applications in geophysical fluid dynamics. Suppose 
then that u and v are not dropped from (2.7), but are replaced a priori by their 
geostrophic values. The resulting Lagrangian 

still depends only on the particle locations, because the geostrophic velocities 

(2.19) 

are determined by the mass distribution. The integrand of L, differs from the exact 
integrand of L by terms of order el?, where 

8 = U / f ,  L (2.20) 
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is the Rossby number and U, fo and L are the scales for velocity, Coriolis parameter 
and horizontal distance. As shown in S83, the approximate dynamics 

6 L,dr = 0 (2.21) I 
exactly conserves the geostrophy energy 

H = -/Idadb[u&+v&+gh] 1 
l - 2  

and a geostrophic approximation to the potential vorticity on fluid particles, 

(2.22) 

(2.23) 

These laws are easily proved from the time and particle-label symmetries of L,. In 
conventional Eulerian notation, the L, dynamics is 

and 

where k is the vertical unit vector and 

(2.25) 

(2.26) 

is the ageostrophic velocity. There is no explicit equation for the time evolution of 
uAG, but an equation determining uAG from h can be found by first forming a second 
equation for &,/at from (2.25) and (2.19), and then requiring this second equation 
to be consistent with (2.24). There results a pair of linear elliptic equations for uAG. 
In  the case of constant Coriolis parameter (for example), the equation determining 

(2.27) 

which has a unique solution for uAG, subject to the boundary conditions uAG = 0 as 
2, y+m. For details of the derivation of (2.24) refer to Appendix A. 

The approximations L x Lo and L x L, can be viewed as projections of the fluid 
state vector in the infinite-dimensional phase space spanned by {z, y, u, v} onto the 
subspace spanned by {z, y}. In the case of Lo, the projected coordinates {u, w} are 
simply set equal to zero. In  the case of L,, the coordinates {u, v} are replaced by the 
values they would have if the motion were exactly geostrophic. 

The L, dynamics has the same-order accuracy in the Rossby number as (say) the 
quasigeostrophic equations. However, unlike the quasigeostrophic equations, the L, 
dynamics allows order-one variations in the fluid depth and the Coriolis parameter. 
In addition, the L, dynamics exactly conserves proper analogues of the energy and 
potential vorticity. I f f  = fo+py, where /3 is a small constant, and the L, equations 
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are linearized about a state of rest and constant depth ho, then solutions proportional 
to 

exp [i(kx+ Zy - w t ) ]  (2.28) 

obey the same Rossby-wave dispersion relation 

as the exact equations (2.2). 

(2.29) 

3. Generalized semigeostrophic equations 
The modifications to L,  dynamics that will be described below were motivated by 

an illuminating geometrical view of Hamiltonian mechanics which has been nicely 
summarized by Greene (1982). Briefly, every Hamiltonian system is defined by 
precisely two geometrical objects : the Poisson-bracket operator and the Hamiltonian 
function itself. In terms of these objects, the dynamical equations can be cast into 
a tensorial form which is covariant with respect to  arbitrary transformations of 
the phase coordinates. The Poisson-bracket operator takes its simplest form when 
the chosen coordinates are canonical. Given any Poisson-bracket operator, there 
are infinitely many sets of canonical coordinates, inter-related by canonical 
transformations. 

The foregoing facts suggest the following strategy for simplifying the L, dynamics: 
to seek canonical coordinates for the L,  system, and, from among all possible sets 
of canonical coordinates, to choose that set in which the Hamiltonian takes its 
simplest form. 

Now, if no further modifications to the L,-dynamics were allowed, then the 
foregoing strategy would be hopelessly difficult to  pursue. However, as noted above, 
the Lagrangian L, is already in error by terms of order €U2 in its integrand. I am 
therefore free to  modify the integrand of L, arbitrarily by terms of this same order. 
As will now be shown, this freedom makes i t  extremely easy to pursue the strategy 
outlined above. 

First consider Lo. If the Coriolis parameter is constant (i.e. f = 2 8 )  then 

is already in canonical form. The conjugate variables are simply x and y.t Suppose 
then that f(z, y)  is non-constant. Let 

x o h  Y), Yo(", Y) (3.2) 

be any two functions of (x, y) for which 

(3.3) 

and that the last term can be dropped, because the variations allowed by Hamilton's principle ere 
zero at the endpoints in time. 
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Then the coordinates 
xo(a, b ,  71,  YO(^, b,  7 )  

are canonical. To see that this is true, defme R and P by 

(3.4) 

R(x,y) =tf,[yo~-ZO~], P(x,y) = t f , [ - y o ~ + x o ~ ] .  aY a Y  (3.5) 

It follows from (3.3) and (3.5) that R and P satisfy the required condition (2.9). Then 
direct substitution of (3.5) into (2.14) leads to 

It is therefore a simple matter to transform Lo into canonical form. However, 
relatively little is gained, because (2.16) are already so simple. 

Now consider L,. I first seek a transformation from old coordinates 

x(a, b,  71, y(a, b, 7 )  

to new coordinates q a ,  b, 71, y,(a, b, 7 )  

for which 

JJdadb {I%-R(G Y)16Z+ [% + P(Z9 Y)18Y) 

= jjdadb~-R(xs,Ys)6z,+P(xs,Ys)6Ys~+6S, (3.7) 

where 6x is arbitrary, and 6xs is the image of 6x under the sought-for transformation. 
In  (3.7) and everywhere below, the prescribed functions R( , ), P( , ) and f( , ) 
always have the same dependence on their arguments. The quantity S is an arbitrary 
functional of x or x, whose presence has no effect on the dynamics.? If a transformation 
satisfying (3.7) can be found then the transformed L, dynamics take the form 

which is almost canonical. If exactly canonical coordinates are desired then (xs, y,) 
may be subjected to a further transform like that from (x, y) to (xo, yo) above. This 
further transformation, which has the effect of replacing f(x,, y,) in (3.8) by a 
constant, is probably not worth the extra trouble. 

It is very difficult to find a coordinate transformation that satisfies (3.7) exactly. 
However, it  is unnecessary to satisfy (3.7) exactly, because the integrand of L, already 
contains errors of order su2 .  It is therefore only necessary to satisfy the transformation 
condition (3.7) to  within order sUL. This turns out to be very easy. Let 

x, = x + F ,  ys = y+G. (3.9) 

where F and G are functionals of order EL, to be determined. By direct substitution, 

t This is because the variations allowed by Hamilton’s principle are zero at the endpoints in 
time. In  conventional theory, S would be called the generating function of the transform. However, 
this terminology is inappropriate here, because the transformation is between non-canonical 
coordinates. 
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= Jsdadb{[-R(x,y)--F-- aR ax g G ] 6 x  

6y- R(x, y) 6F+ P(x ,  y) 

* *  

- 6 (RF) + 6( P G ) }  + O($fo L2) . (3.10) 

Here O(e8fO L2) stands for quadratic (and higher) terms in F and G. The last two terms 
in (3.10) can be absorbed into the arbitrary functional S. The remaining terms match 
the left-hand side of (3.7) if 

2, 
F = > + O ( e a  f , G = -  f 

In particular, the coordinates 

satisfy (3.11) to within the required accuracy. Here 

(3.11) 

(3.12) 

(3.13) 

The choice (3.12) was made with the faith that the ha1  transformed equations would 
take a simple form if the arguments of R, P and f were made the same in every term 
of the approximate Lagrangian. This turns out to be the case. Applying this principle 
also to the Hamiltonian H,, I replace H, by 

(3.14) 

The integrands of H ,  and H ,  also differ by terms of order SV. The h a 1  transformed 
dynamics are now 

6 L, d7 = 0, (3.15) s 
where L, = j j d a d b  [ -R(x,,y,) ~ + P ( x , , Y , )  ax, a Y  $I-%. (3.16) 

The variations 6x,(a, b, T ) ,  6y,(a, b ,  7 )  yield 

(3.17) 

The dynamics (3.17) has the same accuracy as the L, dynamics. This is true because 
the integrands of L, and L, differ by order su2, the same size difference as between 
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L, and the exact Lagrangian L. Moreover, since the time and particle-label 
symmetries have not been disturbed, the dynamics (3.17) exactly conserves the 
energy Hs and the following form of potential vorticity on fluid particles: 

where 

(3.18) 

(3.19) 

Thus (3.18) is a consistent low-Rossby-number approximation to the exact potential 
vorticity in (2.13). 

The functional derivatives in (3.17) can be evaluated, and they take a simple form 
(see Appendix B). It turns out that 

where 

The final L, dynamics thus take the form 

GS = f(ui + vi) + gh. 

(3.20) 

(3.21) 

(3.22) 

In  the case of a constant Coriolis parameter, (3.12), (3.21), and (3.22) reduce to 

xs = x+-, VG ys = y--, UG (3.23) 
f o  f o  

(3.24) 

and GS = t(u& + v&) + gh. (3.25) 

The final equalities in (3.24) are proved in Appendix B. The equations (3.23)-(3.25) 
are precisely equivalent to the semigeostrophic equations of Hoskins (1975). The 
semigeostrophic equations exactly conserve the energy H ,  and the following form of 
the potential vorticity on fluid particles: 

(3.26) 

Again, (3.26) is a consistent low-Rossby-number approximation to the exact potential 
vorticity in (2.13). 

The generalized semigeostrophic equations (3.22) can be solved as follows. Let 
~ ~ ( u , b , 7 ~ )  and @s(xs, ys,70) be given at the initial time 70. Use (3.22) to obtain 
xs(u, b,  70+A7) at the new time 70+A7. This process can be continued only if 
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@,(x,, y,, ro + Ar) can be found. To determine @,, solve the transformation equations 
(3.12) for the untransformed particle locations x(a,b,rO+Ar).  Then h, its x- and 
y-derivatives, and hence 

Hoskins has suggested a specific method for determining @, which is interesting 
for two reasons. First, i t  shows that the semigeostrophic equations can be closed in 
the transformed variables. Secondly, i t  demonstrates an interesting connection with 
the ordinary quasigeostrophic equations. As noted by Hoskins, the conservation of 

can be computed. 

potential vorticity 
q = f,/h, (3.27) 

may be expressed as 

(3.28) 

Here t, = r ,  but (x,, y,, t , )  are independent variables. By (3.22), (3.28) becomes 

(3.29) 

which can be used t o  step q(xs, y,, t , )  forward in time. Then the problem is to  determine 
aS(xs, y,, t,) from q at the new time. Now 

(3.30) 

is equivalcnt to 

after substitutions from (3.21) and (3.12). But, as shown in Appendix B, 

(3.32) 

Elimination of us, w, between (3.32) and (3.31) gives a nonlinear elliptic equation 
which determines @, from q. These equations can be solved by iterations, because 
the nonlinear terms in (3.31) and (3.32) are of higher order in the Rossby number. 
To a first approximation in the Rossby number, (3.31) and (3.32) reduce to 

(3.33) 

Now if, as assumed in the quasigeostrophic approximation, the lengthscale for 
variation of the Coriolis parameter is very large, and the departure @: of @, from 
its constant mean value 0: is small, then a consistent low-Rossby-number 
approximation to  (3.33) is 

[f,+f, 1 v: @;-$ @;I = - @: q. 
9 

(3.34) 

Equations (3.29) and (3.34) are formally identical with the quasigeostrophic equation, 
except that  @; replaces the ordinary stream function and (x,, y,, t,) replace the 
ordinary variables (2, y, t ) .  Solutions of the generalized semigeostrophic equations 
therefore resemble solutions of the quasigeostrophic equation, except that, as noted 
by Hoskins, the transformation (3.12) to physical space causes a distortion in which 
regions of positive relative vorticity become smaller and regions of negative relative 
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vorticity become larger. This asymmetry between low- and high-pressure centres is, 
of course, a characteristic property of weather maps. 

In  the case of constant Coriolis parameter, the semigeostrophic equations (3.24) 
are precisely equivalent to the Eulerian equations 

- D uG + fk  x u = -gVh. 
Dt 

(3.35) 

The only difference between (3.35) and the exact equations (2.2) is that the 
geostrophic velocity uG replaces the exact velocity u after the substantial derivative. 
This has been called the ‘geostrophic momentum approximation’. In the general case 
of a non-constant Coriolis parameter, the semigeostrophic equations (3.22) take the 
same Eulerian form (3.35) within error terns of order e2fo U.  This can be proved by 
direct substitutions from (3.12), (3.13) and (3.21), and numerous algebraic 
cancellations. 

4. New equations for large-scale flow 

with dominant lengthscales greater than the deformation radius r,  where 
The equations (2.17) for purely geostrophic motion have been used to study flows 

r = A-’ = (gh,)f/fo. (4.1) 

For example, (2.17) apply to an ocean composed of two immiscible layers in which 
the lower layer is everywhere at rest. In this application, (u, w )  and h represent the 
velocity and depth of the upper layer and g is replaced by the reduced gravity g ‘ ,  
where 

and Ap is the small density difference between layers. The corresponding deformation 
radius is about 40 km. This model (with appropriate wind-forcing and friction terms 
appended) and its multilayer generalizations have frequently been used to study the 
large-scale mean ocean circulation (see e.g. Parsons 1969). If the term ah/& is struck 
from (2.17c), then (2.17) are the simplest case of the ‘thermocline equations’ 
(Pedlosky 1979). 

Even in the case of very large-scale flows, it may be incorrect to neglect the relative 
accelerations completely. For example, it is widely thought that the ocean boundary 
layers have an inertial character of the type first considered by Fofonoff (1954). The 
interior flow may be accurately governed by (2.17) but this flow is greatly affected 
by the presence of the boundary layers. In  this context, the term ‘boundary layer ’ 
also applies to narrow intense currents like the Gulf Stream after they have detached 
from the coast. The Fofonoff boundary-layer thickness is unrelated to the deformation 
radius. 

In this section I derive new equations for large-scale flow which are hardly more 
complicated (in transformed coordinates) than (2.17), but consistently include the 
effects of relative accelerations on the large-scale flow. First, define 

and note that (u,*, w,*) differ from (us, w,) in that (xs, ys, h,) replace (x, y, h).  It is easy 
to show that 

h = h, [ 1 +z& (;)-$ (z) + 0(s2)], (4.4) 
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so that U, = u,*+O(sU)+O(BU), us = v,*+O(eU)+O(BU), (4.5) 

and 

where 

is the 'Burger' number. It follows from (4.5) and (4.6) that 

(4.7) 

is a consistent approximation to H ,  for B = O(E) ,  i.e. small Rossby number and small 
Burger number. The last equality in (4.8) follows an integration by parts. The 
approximate dynamics 

6 L,* dr = 0, (4-9) 

where L,* = J jdadb  [--R(x,,Ys)~+P(Is,Ys)~]-Hs*r 3% aYs (4.10) 

has the same accuracy aa L, dynamics and the generalized semigeostrophic dynamics 
at lengthscales larger than the deformation radius. Note that H,*, unlike H,, has a 
simple dependence on the transformed particle locations x,(a, b, 7 ) .  As shown below, 
this leads to simple closed equations in the transformed variables. The variational 
equations corresponding to (4.9) are 

s 

(4.11) 

As shown in Appendix C, the functional derivatives in (4.11) again take the form 

(4.12) 

(4.13) 

From (4.3) and (4.13) it follows that the potential @,* depends only on h, and its 
derivatives in the transformed variables (xs, y,). Because of this fact, it is possible to 
cast the L,* dynamics into the form of a single prognostic equation for h,. There is no 
elliptic equation to solve and no need to solve the transformation equations until it 
is time 'to look at the answer'. To appreciate these facts, first note that a direct 
application of a/& to the definition 

yields an exact equation for the conservation of mass : 

(4.14) 
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Substitutions from (4.11) and (4.12) bring (4.14) into the form 

(4.15) 

which contains only h,(z,, y,, t,) and its derivatives. The pofential-vorticity equation 

(4.16) 

could also be used, instead of (4.14). 

total energy 
Suppose B = O(s). Then the dynamics (4.11), (4.12) or (4.15) exactly conserves the 

H,* = ~SSdadb[z~b+plb+gh+O(€~) ]  (4.17) 

and the following form of the potential vorticity on particles : 

[ f (2, y ) + s- %] 
f @ S ,  Ys) - ay [1+0(€2)] .  

43 h 
(4.18) 

These conservation laws are easily proved from the time and particle-label symmetries 
of L,* or directly from the dynamics (4.11)-(4.15). Direct substitutions verify that 
these dynamics are equivalent to 

(4.19) 

in conventional Eulerian notation. Here 0 ( e 2 )  stands for higher-order terms, which 
are of the order of the error in the approximation L x L,*, but which must be included 
for the exact conservation laws to obtain. The transformed equations (4.11), (4.12) 
or (4.15) are much the simplest way to pose L,* dynamics. 

If (4.15) is linearized about a state of rest and constant depth, then the linear wave 
solutions of (4.15) obey the dispersion relation 

a 
at 
- UG + UG’vUG + fk x U = -gVh[l+ 0 ( C 2 ) ]  

o=$[l-T], (P + 1 2 )  
(4.20) 

which is a consistent approximation to (2.29) for large-scale waves (k2 + la < A2). For 
vanishing wavelengths, to which the L,* dynamics do not accurately apply, the phase 
and group velocities corresponding to (4.20) become infinite. This explains how it has 
been possible to include the effects of the relative vorticity without solving an elliptic 
equation like (2.27) or (3.34). The L,* dynamics are appropriate for basin-scale 
numerical models of the ocean. In even the largest of these models, the deformation 
radius is barely resolved. 

5. Final comments 
In the commonest procedure for obtaining approximate dynamical equations, one 

begins with the ‘ exact ’ equations of motion in some particular (usually Eulerian) 
coordinate system. A scaling analysis identifies some of the terms in these equations 
as ‘small’. The small terms are then neglected on the tacit assumption that small 
errors in the equations of motion cause only small errors in the solutions to these 
equations. This assumption is, however, generally untrue. It is well known, for 
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example, that even very small errors in the initial conditions of a turbulent flow cause 
order-one errors in the flow after a finite time. The neglect of small terms in the 
equations of motion is obviously equivalent to a continuously acting source of small 
errors. Therefore, the neglect of small terms cannot generally yield solutions that are 
close to the exact solutions, except in some imprecisely defined average sense. 

The equations governing dynamical systems always have an underlying Hamil- 
tonian structure and an associated system of symmetry properties and conservation 
laws. Recent research on dynamical systems has only reemphasized the importance 
of these characteristics in determining the behaviour of the dynamical system. I 
suggest that dynamical approximations should always preserve this Hamiltonian 
structure and retain analogues of all the exact conservation laws. The combination 
of formal accuracy plus the proper conservation laws is a better guarantee of an 
acceptable approximation than is formal accuracy by itself. 

Lorenz (1960) was among the first to realize that approximations based solely upon 
a scaling analysis do not generally maintain analogues of the exact conservation laws. 
Lorenz showed that small terms in the Eulerian fluid equations must be omitted or 
retained in special combinations, or the conservation laws are lost. In the Hamiltonian 
methods of this paper, the conservation laws are automatically maintained because 
approximations based upon a scaling analysis are applied directly to the Lagrangian, 
taking care not to break the symmetry properties corresponding to the conservation 
laws of the fluid. My results are a generalization of the results of Lorenz and others, 
in the sense that they allow the appearance as well as the disappearance of small error 
terms in the Eulerian equations and in the expressions for conserved quantities like 
potential vorticity. 

Every dynamical approximation has two distinct elements : the inherent physics 
of the approximation, and the coordinates used to describe it. The accuracy of the 
approximation, and the existence of conservation laws, are covariant properties of the 
physics: they are not affected by transformations to new coordinates. On the other 
hand, the mathematical simplicity of the approximation is highly dependent on the 
choice of coordinates, and can only be judged in that particular set of coordinates 
in which the chosen physics takes its simplest form. There is no reason to favour any 
other set of coordinates. In this paper, I have shown how an opportunistic, 
bootstrapping approach, based on an appreciation for the Hamiltonian structure of 
fluid mechanics, in which the physics and coordinates are simultaneously adjusted, 
can lead to physically consistent approximations of surprising simplicity. 

This work was supported by the National Science Foundation Grant OCE-8400259. 
I am indebted to Philip J. Morrison of the University of Texas for a helpful 
suggestion. 

Appendix A 
Let 

where 

A = j L,, 

and L, is given by (2.18). For arbitrary variations 6x(a, b, T ) ,  
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a a 
a7 a7 

(uG-R) - 62+(VG+P) - 6y-X6R+?j6P+ (k-uG)*6uG-b6h 

and h and uAG are defined by (2.5) and (2.26). Using 

R = V R * k ,  P = V P - k  (A 6) 

and (2.9), (A 4) may be simplified to 

6A = {( -GG + f?j) 62+ ( -@G- f2) 6y+uAG'6u,-fg 6h). (A 7) I 
Now for any scalar F, 

A similar (but much lengthier) calculation establishes that 

for any vector F. Setting F = -9 in (A 8) and F = uAG in (A 9), substituting the 
results into (A 7), and equating coefficients of 6x to zero, I finally obtain (2.24). 

Appendix B 

application of 8/37 to the definition 
The existence of a function @, satisfying (3.20) can be anticipated as follows. Direct 

yields an exact equation for the conservation of mass in transformed coordinates, 
namely 

FLY 163 16 
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where t, = 7 but (x,, y,, t,) are independent variables. On the other hand, the 
conservation of potential vorticity f , /h ,  can be expressed as 

The two equations (B 2) and (B 3) are compatible only if 

for some @,. 
To verify (3.20) and (3.21) directly, first note that 

6H, = jj da db (us 6u, + v, 6v, + 4 g 6h] 

ah 1 ah 
= j j d a  d b  [us 6u,+v, 6v,+g - 6 x + g  - 6y , 

ax aY 
where the last equality follows an integration by parts. By use of the transformation 
equations (3.12), this becomes 

Therefore 

and similarly for 6HS/6y,. On the other hand, 

Substitution of (B 9) into (B 8) and comparison with (B 7) establishes that 

8- 6~ a@, 
6x, ax; -- 
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Consider variations in the mapping from (a, b) to  (2, y). It is easiest to regard (x, y) 
as fixed. Then 

where 

But 

and thus 

Therefore 

aa aa ab ab 
6a = -- 6x-- 6y) 6b = --ax-- 6y, ax ay ax ay 

6H = j j  da db [lex =!-+ 6y $1 @. 
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